wjec cbac

GCSE MARKING SCHEME

SUMMER 2023

GCSE MATHEMATICS UNIT 1 – INTERMEDIATE TIER 3300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

PMT

WJEC GCSE MATHEMATICS

SUMMER 2023 MARK SCHEME

Unit 1:	Intermed	iate Ti	er			Mark	Comments
1.	Showing					B2	Award B2 for one of the following:
	-						 all correct % (<u>40</u> or <u>30</u> must be shown as 100 100
	40%	and	(9%)	and	30%		40% or 30%)
							 all correct fractions with a common
OR	<u>40</u>	and	<u>9</u> 100	and	<u>30</u>		denominator (could include decimals as
	100	anu	100	anu	100		numerators and denominators)
							all correct decimals
OR	0.4	and	0.09	and	(0.3)		correct work using a common amount
							• a valid combination that allows full a = 20%
OR	three co	rrect ca	lculatior	ns for a c	ommon		comparison (e.g. $2/5 = 0.4$ and $0.3 = 30\%$).
U.V.	amount.						Award B1 for one of the following:
							 one correct conversion (percentage or
							decimal)
							 two correct fractions with a common
							denominator
							 two correct calculations for a common
							amount.
	9%	0.3	<u>2</u> 5	in or	der	B1	Allow any unambiguous indication (e.g. 'converted'
			5				values.) Correct answer with no incorrect conversions seen
							gains the final B1.
							If incorrect conversions seen, then strict FT of 'their
							work' only if B1 gained.
							Correct answer, with no other marks awarded, gains
							final B1 only.
2.		nath -	20 (am)	\ \ /id	th = 4 (org)	B2	Answer space takes precedence. Must be in the correct order for B2.
	Le	ngui –	20 (cm)	vviu	th = 4 (cm)	DZ	Award B1 for one of the following as a final answer or
							final attempt:
							 length × width = 80
							(e.g. length = 4 AND width = 20 or
							length = 16 AND width = 5)
							• 80 ÷ width = length
							e.g 80 ÷ 5 = 16 or 80 ÷ 20 = 4 or 80 ÷ 10 = 8
							 length = 5 × width a r length = 10 AND width = 2.2 or 2 × 5 = 15
							e.g length = 16 AND width = $3 \cdot 2$ or $3 \times 5 = 15$
							If no answers are given on answer space:
							 Length = 20 (cm) and Width = 4 (cm) must be explicitly identified as a final answer for B2.
3.(a)(i)		(x =)	24			B1	Mark final answer.
		. /					Allow B1 for a correct embedded answer BUT B0 if
							contradicted by $x \neq 24$.

3.(a)(ii)		Mark final answer.
3x = 27	B1	
(<i>x</i> =) 9	B1	FT from $3x = k$.
		Unsupported answer of 9 is awarded B1B1. $x = \frac{27}{2}$ is awarded B1B0.
		3 If FT leads to a whole number answer, it must be
		shown as a whole number. Otherwise accept a
		fraction (e.g. if $3x = 7$, then $x = \frac{7}{3}$ is awarded B0B1,
		but $x = 7 \div 3$ is awarded B0B0).
		Allow B1B1 for a correct embedded answer BUT B1B0 if contradicted by $x \neq 9$.
3.(b)	B2	Mark final answer. Must be an expression for B2.
8f - 13g	DZ	Award B1 for one of the following:
		• sight of $(+)8f$
		• sight of $-13g$ (do not allow, $-13g$)
		• $8f + -13g$.
4.(a) 11 lb	B1	
4.(b) 175 pints	B1	
5.		Answer space takes precedence.
2(n-7) or equivalent e.g. $2n-14$.	B3	For B3, accept as a final answer of:
		• $2 \times (n-7)$
		• $(n-7)2$
		• $(n-7) \times 2$.
		Award B2 if incorrect subsequent working for one of the above.
		Award B2 for sight of one of the following:
		missing brackets error in Samir's age
		$\bullet 2 \times n - 7 \qquad \bullet 2(n + 7)$
		• $n-7 \times 2$ • $2 \times (n+7)$
		$\bullet (n+7)2$ $\bullet (n+7) \times 2$
		$\bullet (n+1) \land 2$ $\bullet 2(7-n)$
		$\bullet 2 \times (7-n)$
		• (7 - <i>n</i>)2
		• $(7-n) \times 2$
		• $2n + 14$
		• 14 – 2n
		Award B1 for sight of one of the following:
		$ \begin{array}{c} \bullet n-7 \\ \bullet 2 \times n+7 \end{array} $
		• $2 \times n + 7$ • $n + 7 \times 2$
		• $n + 7 \times 2$ • $2 \times 7 - n$
		• $2 \wedge 7 - n$ • $7 - n \times 2$
		• $2n-7$
		• n-14
		● <i>n</i> −72.
		Allow use of a different letter for <i>n</i> .

6.(a) 28	B1	Allow B1 for a correct embedded answer (e.g. $28 \div 4 = 7$ BUT B0 if contradicted by total $\neq 28$). Allow the sequence 7,14,21,28 for B1, but only if no further numbers are shown.
6.(b) Four numbers (in any order) with a total of 28 and	B2	Numbers may be seen in any order. Accept answers using fractions and decimals. FT 'their total' from 6(a).
range of 6 e.g. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 Award B1 for four numbers with one of the following: total = 28 total = 'their total' from 6(a) range = 6.
7.	B1	Answer line takes precedence. Check diagram for answers if no answers written on answer lines.
$a = 63(^{\circ})$ $b = 117(^{\circ})$ $c = 117(^{\circ})$	B1 B1	FT 'their <i>b</i> '.
8. Identifying 12 possible combinations	B1	 Award B1 for convincing identification of the 12 combinations, for example: simply stating 12 (3 × 4 =) 12 showing all combinations 1+1, 1+2, etc. all 12 'totals' (2,3,3,4,4,4,5,5,5,6,6,7) shown with no extras completed sample space drawn (3 by 4).
Identifying the 3 correct combinations that give a score of 6 or more (2 and 4, 3 and 3, 3 and 4)	B1	<u>Strict FT</u> only if a list of all possible scores previously stated.
(Probability of '6 or more' =) <u>3</u> or equivalent 12 ISW (but note comment for M1 below)	B1	A fraction with a denominator of 12 implies the first B1. Unsupported $\underline{3}$ or equivalent implies previous B1B1. $\underline{12}$ Probability may be implied in later working (e.g. $60 \div 12 = 5, 5 \times 3 = 15$). FT if a clear numerator and denominator can be identified from previous work. e.g. Possible scores 2, 3, 4, 5, 6, 7 (B0) 2 scores of 6 or more (B1 FT) Probability = $\underline{2}$ (B1 FT)
(Number of winning scores =) <u>3</u> × 60 or equivalent 12	M1	FT 'their <u>3'</u> 12 If 'their <u>3</u> ' incorrectly simplified and used then award 12 B0 previously.
= 15	A1	Must not come from incorrect working. Award M1 A0 for a final answer of $\begin{pmatrix} 3 \\ 12 \end{pmatrix} = \begin{pmatrix} 15 \\ 12 \end{pmatrix}$ Note: using 'a winning score of 6' instead of 'a winning score of 6 or more' can be awarded a maximum of B1B0B1M1A1.

I

8. Organisation and Communication.	OC1	 For OC1, candidates will be expected to: present their response in a structured way explain to the reader what they are doing at each step of their response lay out their explanation and working in a way that is clear and logical write a conclusion that draws together their results and explains what their answer means
Accuracy of writing.	W1	 For W1, candidates will be expected to: show all their working make few, if any, errors in spelling, punctuation and grammar use correct mathematical form in their working use appropriate terminology, units, etc.
9.(a) <u>48</u> (× 100) or equivalent	M1	M1 for sight of 0.12.
400 = 12(%)	A1	
		Note: other complete valid methods to look out for include: • 48 ÷ 4 • 10% + 1% + 1% (= 40 + 4 + 4) • (48 out of 400 =) 12 out of 100 = 12(%)
9.(b) Use of $\frac{45}{2}$ or equivalent	M1	Sight of an appropriate 5 (or 40) implies M1.
9 (£)40 AND (£)5	A1	Accept in either order.
9.(c) $(1 -) \frac{1}{2}$	B1	Award B1 for sight of $\underline{1}$ or 0.125 or 1 ÷ 8.
8 = <u>7</u> 8	B1	FT from $1 - \underline{m}$ where \underline{m} clearly shown as 'their $\underline{1'}$ n n n $8provided it is written as a fraction and not \underline{1}2Mark final answer.A final answer of 0.875 is awarded B1B0.$
9(c) <u>Alternative method</u> $\frac{8-1}{8} \text{or} \frac{2^3-1}{2^3}$	B1	For consistent correct use of $2^3 = 8$
$=\frac{7}{8}$	B1	FT for 'their consistent value of $2^{3'}$ e.g. $\frac{6-1}{6} = \frac{5}{6}$ gains B0B1.
		Mark final answer. A final answer of 0.875 is awarded B1B0.
10. $\frac{3}{4} \times 512$ OR $512 - \frac{1}{4} \times 512$ or equivalent 4	M1	Award M1 for full method for calculating the OUTPUT.(Note: 512 – 128).
= 384	A1	
<u>3</u> × 384 OR 384 – <u>1</u> × 384 or equivalent 4 4	M1	Award M1 for full method for calculating the OUTPUT.(Note: 384 – 96). FT 'their 384' if greater than 300.
(OUTPUT =) 288 ISW	A1	FT if 'their 288' < 300, or further evaluation correctly carried out until their output < 300.
		If no marks gained allow SC1 for sight of 128. Award M2 for $\frac{9}{16} \times 512$ with answer of 288 is
		awarded A2.

11.(a)	B2	 Award B2 for the correct rotation drawn with no other shapes drawn on the grid. Award B1 for a 90° correct clockwise rotation with either: no other shapes drawn on the grid the correct rotation (no others).
11.(b)(i)	B1	
11.(b)(ii) $\begin{pmatrix} 1 \\ -7 \end{pmatrix}$	B1	Award B0 for • 1 (missing brackets) -7 • $\binom{-7}{1}$ • (1,-7) • $\frac{1}{-7}$ with or without brackets. -7 • $-\binom{-1}{7}$.
12.(a) For a single method that produces 2 prime factors from the set {3, 3, 3, 5, 5} before the 2 nd error.	M1	Must be a method that involves only division. Check for errors in the method before checking the 2 prime factors from the set. (Note $675 = 5 \times 135$ $675 = 3 \times 225$ $135 = 5 \times 27$ $135 = 3 \times 45$)
3, 3, 3, 5, 5	A1	CAO. For sight of the five correct factors (Ignore 1s)
3 ³ × 5 ²	B1	Do not FT non-primes. FT <u>'their primes'</u> provided at least one index form used with at least a square. Allow $(3^3)(5^2)$ and $3^3.5^2$ and 3^35^2 Do not allow $3^3,5^2$ Inclusion of 1 as a factor gets B0.
12.(b) 10	B1	Do not accept 2 × 5.
13.(a)(i) m ⁷	B1	
13.(a)(ii) m ¹⁰	B1	
13.(b) 7 <i>n</i> – 3	B2	Mark final answer. B1 for sight of $7n$. Allow notation of $n7$ or $7 \times n$ or $n \times 7$ for $7n$. Allow <i>N</i> for <i>n</i> , but penalise –1 for use of a different letter.

	1	
13.(c) 7, 8 and 9	B2	 Answer line takes precedence. Award B2 for all three integers and no extras. Award B1 for one of the following indicated as a final answer: 7, 8, 9 and only <u>one</u> other incorrect value for two correct with no incorrect value 7 to 9 7, 7.5, 8, 8.5, 9 sight of 6.5 < n < 9.5 or equivalent 14,16,18 14,15,16,17,18. Allow B2 for correct embedded answers of 7, 8 and 9 (e.g. sight of only 2 × 7 = 14, 2 × 8 = 16, 2 × 9 = 18 with no other calculations) BUT only B1 if contradicted on answer line (e.g. 14, 16, 18 for the example above).
14.(a) Correct construction of 60°	B1	Must be at point <i>B</i> . Correct construction arcs (two or three) must be seen (initial and secondary). B0 if 60° and 30° drawn. Ignore additional lines provided intended 60° is clear (e.g any triangle, including equilateral <i>ABC</i>). For example:
14.(b) Correct construction of 90°	B1	Must be at point <i>R</i> above or below <i>LM</i> . Correct construction arcs (initial and secondary) must be seen.
14.(c) <u>All</u> correct construction arcs shown	M1	 Arc, <u>centre P</u>, intersecting XY at two points. (X may be one of the points with no arc seen at point X) [Note to markers: These arcs may be identified by the fact that they will 'cross the line XY at an acute angle'. Arcs 'crossing the line at 90°' is evidence of an inappropriate method.] AND Intersecting arcs (equal radii) using the above two points as centres. Ignore line extended above XY for M1.
Line drawn	A1	Ignore line extended above XY for M1A1.
14.(c) <u>Alternative method</u> (Using the properties of a kite.) <u>All</u> correct construction arcs shown.	M1	Intersecting arcs whose centres are any two points on the line XY and respective radii equal in length to the distance from the points to the point P. [Note to markers: The arcs will always intersect at a point that is a 'reflection of point P' in the line XX I
Line drawn	A1	point that is a 'reflection of point P' in the line XY.]

15.Check diagram. $(AC^2 =) B^2 + 6^2$ $(AC =) 4B^2 + 6^2$ or equivalent $(AC =) 10 (cm)$ Check (AC = $10 + 36$ M1Check (Ac = $10 + 36$	Г		
$ \begin{array}{c} (AC =) \sqrt{8^{2} + 6^{2}} \text{ or equivalent} \\ (AC =) 10 (cm) \\ A1 \\ (AC =) 10 (cm) \\ A1 \\ (AC =) 10 (cm) \\ CO, \\ Final answer of AC = 100 is M1m0A0. \\ Do not ignore subsequent working \\ e.g. 3 \times 3:14 \\ 3x \\ 9:42 or equivalent \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 7 (cm) + 9:42 (cm), \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ (Perimeter of shape = 8 + 10 + 9:42 =) 27:42(cm) \\ A1 \\ A1 \\ A1 \\ A1 \\ A1 \\ A1 \\ A2 \\ A1 \\ A2 \\ A2$	15.		Check diagram.
(AC =) 10 (cm)A1CAO. Final answer of AC = 100 is M1m0A0.(Curved length =) • $\frac{6 \times 3.14}{2}$ • 3×3.14 • 3π • 9.42 or equivalentB1Do not ignore subsequent working e.g. 3×3.14 = 9.42 , then 9.42×2 or 9.42×2 would gain B0.(Perimeter of shape = $8 + 10 + 9.42 = $) 27.42(cm)A1Allow 27.4(cm). Award A0 for 18 + 3π. FT their curved length only if B0 awarded and for one of the following: • 3.14 used to find the circumference of a circle • area of a semicircle used.FO example, M1m1A1 awarded for 10 (cm), B1 for $3 \times 3.14 + 9$ (cm) A ward 40 for 18 + 3π . FT their curved length only if B0 awarded and for one of the following: • 3.14 used to find the circumference of a circle • area of a semicircle used.For example, M1m1A1 awarded for 10 (cm), B1 for $3 \times 3.14 + 9$ (cm) A0 for $8 + 10 + 9 = 27$ (cm) as B1 previously awarded. Note, if a final answer of: • $3.24(2)$ (cm) is given (full circumference used) award M1m1A1B0A1 • $32^{-1}(3)$ (cm) is $2^{-1}(3)$ (cmin) • $2^{+}(1)^{+}(3)^{-}(1)^{-}(4)^{+}(1)^{+}(3)^{-}(1)^{-}$			
$ \begin{array}{c} (Curved length =) & (Curved length =) $	$(AC =) \sqrt{8^2 + 6^2}$ or equivalent		
(Curved length =) • $\frac{6 \times 3:14}{2}$ • $3 \times 3:14$ • $3 \times 3:14$	(<i>AC</i> =) 10 (cm)	AT	
$ \begin{array}{c} (a \mbox{ solution}) & \frac{6 \times 3.14}{2} \\ & \frac{2}{2} \times 3 \times 3.14 \\ & \frac{3}{2} \times 3 \times 3.14 \\ & 3\pi \\ & 9 \times 9 \times 2 \ \ \ or \ equivalent \\ \\ (Perimeter of shape = 8 + 10 + 9 \times 42 =) \ 27 \times 42(cm) \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			Final answer of AC = 100 is M1m0A0.
$ \begin{array}{c} (a \mbox{ solution}) & \frac{6 \times 3.14}{2} \\ & \frac{2}{2} \times 3 \times 3.14 \\ & \frac{3}{2} \times 3 \times 3.14 \\ & 3\pi \\ & 9 \times 9 \times 2 \ \ \ or \ equivalent \\ \\ (Perimeter of shape = 8 + 10 + 9 \times 42 =) \ 27 \times 42(cm) \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		DИ	
$\frac{2 \times 3 \times 3.14}{2}$ $\frac{3 \times 3.14}{3 \times 3.14}$ $\frac{3 \times 3}{3 \times 3.14}$ $3 $		ы	
$\frac{2 \times 3 \times 3.14}{2}$ $\frac{3 \times 3.14}{3 \times 3.14}$ $\frac{3 \times 3}{3 \times 3.14}$ $3 $	• $\underline{6 \times 3.14}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2		gain B0.
• 3×3.14 • 3π • 9.42 or equivalent (Perimeter of shape = $8 + 10 + 9.42 = 27.42$ (cm) A1 Allow 27.4(cm). Avard A0 for 18 + 3π . FT 'their <i>AC</i> only if M1 gained. FT 'their <i>AC</i> only if M1 gained. FT 'their <i>AC</i> only if M1 gained. FT 'their following: • 3.14 used to find the circumference of a circle • area of a semicircle used. For example, M1m1A1 awarded for 10 (cm), B1 for $3 \times 3.14 = 9$ (cm) A0 for $8 + 10 + 9 = 27$ (cm) as B1 previously awarded. Note, if a final answer of: • $33.4(2)$ (cm) is given (full circumference used) award M1m1A1B0A1 • $36.4(2)$ (cm) is given (full circumference used) award M1m1A1B0A1 • $32.4(3)$ (cm) is given (area semicircle used) award M1m1A1B0A1 • $32.4(3)$ (cm) is 4.52 for 4.57 for 4.17 • 7.17 (b) 7.17 (b) (cmin) = 10 (min) • 7.17 (cm) 20 (min) • 7.17 (cm) 20 (min) • 7.10 (cmin) = $10.25 - 0.45$ • 0.3 AND shown on relevant branch. • 0.96 shown on <u>all</u> three branches. B1 • $17.(6)$ • 0.25×0.04 or equivalent M1	• $2 \times 3 \times 3.14$		
 3r • 9·42 or equivalent (Perimeter of shape = 8 + 10 + 9·42 =) 27·42(cm) A1 (Perimeter of shape = 8 + 10 + 9·42 =) 27·42(cm) A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	2		
• 9.42 or equivalent (Perimeter of shape = 8 + 10 + 9.42 =) 27.42(cm) (Perimeter of shape = 8 + 10 + 9.42 =) 27.42(cm) Allow 27.4(cm), Award A0 for 18 + 3π. FT their AC' only if M1 gained. FT their C only if M1 gained. M1 Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)). CR sight of 2 × 5(min) AND 2(hr) 45(min) CR sight of 2 × 5(min) in an appropriate calculation. Valid method e.g. • 4(hr) 35(min) + 2(hr) 45(min)(=6(hr) 80(min)) 275(min) + 165(min) (= 440 (min)) • 6 (hr) 90 (min) - 10 (min) • 7 (hr) 20 (min) T (hr) 20 (hr) 4 (hr) 40 (hr) 40 (hr) 40 (hr) 40 (hr) 40 (• 3 × 3·14		
(Perimeter of shape = $8 + 10 + 9 \cdot 42 = 127 \cdot 42(cm)$ AlAllow 27 4(cm), Award A0 for 18 + 3π. FT their AC only if B0 awarded and for one of the following: • 3 · 14 used to find the circumference of a circle • area of a semicircle used. For example, M1m1A1 awarded for 10 (cm), B1 for 3 × 3 · 14 = 9 (cm) A0 for 8 + 10 + 9 = 27 (cm) as B1 previously awarded.16.Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 2 × 5(min) AND 165(min) · 7 (hr) 36(min) + 165(min) (e 440 (cm)) · 7 (hr) 20 (min)B1 Allow incorrect notation for time (e.g. 4:35 for 4(hr) 36(min)).17.(a)P(Bus =) 1 - 0·25 - 0·45 = 0·3 AND shown on relevant branch. · 0·96 shown on all three branches.M1 A117.(b)0.25 × 0·04 or equivalentM117.(b)0.25 × 0·04 or equivalentM1	 3π 		
(Perimeter of shape = $8 + 10 + 9 \cdot 42 = 227 \cdot 42(cm)$ AlAllow 27 \cdot 4(cm), Award A0 for 18 + 3r. FT "their AC" only if B0 awarded and for one of the following: • 3 \cdot 14 used to find the circumference of a circle • area of a semicircle used.For example, M1m1A1 awarded for 10 (cm), B1 it or $3 \times 3 \cdot 14 = 9$ (cm) A0 for $8 + 10 + 9 = 27$ (cm) as B1 previously awarded.Note, if a final answer of: • 33 \cdot 42 (2(cm)) is given (fcm also included) a ward M1m1A1B0A116. OR Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 2 r5(min) AND 165(min) • 6 (hr) 90 (min) - 10 (min) • 7 (hr) 30 (min) - 10 (min) • 280 (min) + 170 (min) - 10 (min)M117.(a)P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on all three branches.17.(b)0.25 × 0.04 or equivalent17.(b)0.25 × 0.04 or equivalentM1	9.42 or equivalent		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Award A0 for 18 + 3π. F1 their AC only if M1 gained. F1 their AC only if M1 gained. F1 their AC only if M0 gained. F1 their AC only if M1 gained. F1 their	(Perimeter of shape = $8 + 10 + 9.42 = 27.42$ (cm)	A1	
FT their curved length 'only if B0 awarded and for one of the following: 			Award A0 for 18 + 3π .
one of the following: • 3:14 used to find the circumference of a circle • area of a semicircle used. For example, M1m1A1 awarded for 10 (cm), B1 for 3 × 3:14 = 9 (cm) A0 for 8 + 10 + 9 = 27 (cm) as B1 previously awarded. Note, if a final answer of: • 33:4(2)(cm) is given (fcm also included) award M1m1A1BA0 • 36:6(4)(cm) is given (fcm also included) award M1m1A1BA1 • 32:1(3) (cm) is given (fcm also included) award M1m1A1BA1 • 32:1(3) (cm) is given (fcm also included) award M1m1A1BA1 • 32:1(3) (cm) is given (fare asemicircle used) award M1m1A1BA1. 16. Sight of 275(min) AND 2(hr) 45(min) OR sight of 275(min) AND 165(min) OR sight of 2 × 5(min) in an appropriate calculation. Valid method e.g. • 4(hr) 35(min) + 2(hr) 45(min)(=6(hr) 80(min)) 275(min) + 165(min) (= 440 (min)) • 6 (hr) 90 (min) - 10 (min) • 7 (hr) 30 (min) - 10 (min) • 4(hr) 40(min) - 10 (min) • 7 (hr) 20 (min) T (hr) 20 (min) 7 (hr) 20 (min) T (hr) 20 (min) 7 (hr) 20 (min) 17.(a) P(Bus =) 1 - 0:25 - 0:45 = 0:3 AND shown on relevant branch. 0:96 shown on all three branches. 17.(b) 0:25 \times 0:04 or equivalent M1			FT 'their AC' only if M1 gained.
one of the following: • 3:14 used to find the circumference of a circle • 3:14 used to find the circumference of a circle • area of a semicircle used. For example, M1m1A1 awarded for 10 (cm), B1 for 3 × 3:14 used B1 for 3 × 3:14 used A0 for 8 + 10 + 9 = 27 (cm) as B1 previously awarded. Note, if a final answer of: • 33:4(2)(cm) is given (6cm also included) award M1m1A1B0A1 • 33:4(2)(cm) is given (6cm also included) award M1m1A1B0A1 • 32:1(3) (cm) is given (6cm also included) award M1m1A1B0A1 • 32:1(3) (cm) is given (area semicircle used) award M1m1A1B0A1 • 38 gipt of 275(min) AND 2(hr) 45(min) B1 Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)). OR sight of 2 × 5(min) in an appropriate calculation. M1 If B0, FT provided unambiguously chosen: • 4(hr) 35(min) + 2(hr) 45(min)(=6(hr) 80(min)) Z75(min) + 165(min) (= 440 (min)) M1 • 6(hr) 90 (min) - 10 (min) If B0, FT provided unambiguously chosen: ·'A 10m s ti < 4h 40m' and '2h 40m s ti < 2h 50m' OR			FT 'their curved length' only if B0 awarded and for
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
 area of a semicircle used. area of a semicircle used. For example, M1m1A1 awarded for 10 (cm), B1 for 3 × 3·14 = 9 (cm) A0 for 8 + 10 + 9 = 27 (cm) as B1 previously awarded. Note, if a final answer of: 33.4(2)(cm) is given (foul circumference used) award M1m1A1B0A1 32·1(3) (cm) is given (area semicircle used) award M1m1A1B0A1 Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 275(min) AND 165(min) Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)). Right of 2 × 5(min) in an appropriate calculation. Valid method e.g. 4(hr) 35(min) + 2(hr) 45(min)(=6(hr) 80(min)) 275(min) + 165(min) (= 440 (min)) 6 (hr) 90 (min) - 10 (min) A(hr) 30 s ti < 4h 40mi and '2h 40m s tz < 2h 50mi OR 270m s ti < 280mi and '160m s tz < 170mi Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)). CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20. T.(a) P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0:96 shown on <u>all</u> three branches. T.(b) 0:25 × 0.04 or equivalent M1 			
For example, M1m1A1 awarded for 10 (cm), B1 for 3 × 3:14 = 9 (cm) A0 for 8 + 10 + 9 = 27 (cm) as B1 previously awarded.Note, if a final answer of: • 33:4(2)(cm) is given (form also included) award M1m1A1B1A0 • 36:8(4)(cm) is given (full circumference used) award M1m1A1B0A116.Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 275(min) AND 165(min) • 7 (hr) 35(min) + 165(min)(=6(hr) 80(min))) • 275(min) + 165(min) (=6(hr) 80(min))) • 6 (hr) 90 (min) - 10 (min) • 4(hr) 30(min) - 10 (min) • 7 (hr) 30 (min) + 170 (min) - 10 (min) • 7 (hr) 20 (min)B1 Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).A1CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a)P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on all three branches.M1 A117.(b)0.25 × 0.04 or equivalentM1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			For example.
B1 for $3 \times 3 \cdot 14 = 9 \text{ (cm)}$ A0 for $8 + 10 + 9 = 27 \text{ (cm)}$ as B1 previously awarded.Note, if a final answer of: • $33 \cdot 4(2)(\text{cm})$ is given (6cm also included) award M1m1A1B1A0 • $36 \cdot 8(4)(\text{cm})$ is given (full circumference used) award M1m1A1B0A1 • $32 \cdot 1(3) \text{ (cm)}$ is given (area semicircle used) award M1m1A1B0A1.16.Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 275(min) AND 165(min) OR sight of 2 × 5(min) in an appropriate calculation.Valid method e.g. • 4(hr) 35(min) + 2(hr) 45(min)(=6(hr) 80(min)) 275(min) + 165(min) (= 440 (min)) • 6 (hr) 90 (min) - 10 (min) • 7 (hr) 30 (min) - 10 (min) • 280 (min) + 170 (min) - 10 (min)T (hr) 20 (min)7 (hr) 20 (min)817 (hr) 20 (min)7 (hr) 20 (min)7 (hr) 20 (min)817 (hr) 20 (min)7 (hr) 20 (min)7 (hr) 20 (min)7 (hr) 20 (min)818181818181			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
awarded.Note, if a final answer of: $33:4(2)(cm)$ is given (6cm also included) award M1m1A1B1A0 $36:8(4)(cm)$ is given (full circumference used) award M1m1A1B0A116.Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 275(min) AND 165(min)B1Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).B1Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).B1Valid method e.g. • 4(hr) 35(min) + 2(hr) 45(min)(=6(hr) 80(min))) 275(min) + 165(min) (=440 (min)) • 6 (hr) 90 (min) - 10 (min) • 7 (hr) 30 (min) - 10 (min)M1If B0, FT provided unambiguously chosen: '4h 30m ≤ t ₁ < 4h 40m' and '2h 40m ≤ t ₂ < 2h 50m' OR '270m ≤ t ₁ < 280m' and '160m ≤ t ₂ < 2h 50m' OR '270m ≤ t ₁ < 280m' and '160m ≤ t ₂ < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).7 (hr) 20 (min)A1CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a)P(Bus =) 1 - 0:25 - 0:45 = 0:3 AND shown on relevant branch. 0:96 shown on all three branches.M1 A17 (hr)0:25 × 0:04 or equivalentM1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
 33·4(2)(cm) is given (6cm also included) award M1m1A1B1A0 36·8(4)(cm) is given (full circumference used) award M1m1A1B0A1 32·1(3) (cm) is given (area semicircle used) award M1m1A1B0A1 41 B0, FT provided unambiguously chosen: '4h 30m ≤ t₁ < 4h 40m' and '2h 40m ≤ t₂ < 2h 50m' OR '270m ≤ t₁ < 280m' and '160m ≤ t₂ < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)). 280 (min) + 170 (min) - 10 (min) 7 (hr) 20 (min) 7 (hr) 20 (min) A1 CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20. 17.(a) P(Bus =) 1 - 0·25 - 0·45 = 0·3 AND shown on relevant branch. 0·96 shown on <u>all</u> three branches. B1 Award M1A0 for 0·3 in working space and not on diagram. 			
 33·4(2)(cm) is given (6cm also included) award M1m1A1B1A0 36·8(4)(cm) is given (full circumference used) award M1m1A1B0A1 32·1(3) (cm) is given (area semicircle used) award M1m1A1B0A1 41 B0, FT provided unambiguously chosen: '4h 30m ≤ t₁ < 4h 40m' and '2h 40m ≤ t₂ < 2h 50m' OR '270m ≤ t₁ < 280m' and '160m ≤ t₂ < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)). 280 (min) + 170 (min) - 10 (min) 7 (hr) 20 (min) 7 (hr) 20 (min) A1 CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20. 17.(a) P(Bus =) 1 - 0·25 - 0·45 = 0·3 AND shown on relevant branch. 0·96 shown on <u>all</u> three branches. B1 Award M1A0 for 0·3 in working space and not on diagram. 			Note, if a final answer of
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
award M1m1A1B0A1 • 32·1(3) (cm) is given (area semicircle used) award M1m1A1B0A1.16.Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 275(min) AND 165(min)B1Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).OR sight of 2 × 5(min) in an appropriate calculation.B1Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).Valid method e.g. • 4(hr) 35(min) + 165(min) (= 440 (min)) • 6 (hr) 90 (min) - 10 (min) • 7 (hr) 30 (min) - 10 (min) • 280 (min) + 170 (min) - 10 (min)M1If B0, FT provided unambiguously chosen: '4h 30m ≤ t₁ < 4h 40m' and '2h 40m ≤ t₂ < 2h 50m' OR '270m ≤ t₁ < 280m' and '160m ≤ t₂ < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).7 (hr) 20 (min)A1CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a)P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches.M117.(b)0.25 × 0.04 or equivalentM1			
• $32 \cdot 1(3)$ (cm) is given (area semicircle used) award M1m1A1B0A1.16.Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 275(min) AND 165(min)B1Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).OR sight of 2 × 5(min) in an appropriate calculation.B1Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).Valid method e.g.If B0, FT provided unambiguously chosen: '4h 30m ≤ t ₁ < 4h 40m' and '2h 40m ≤ t ₂ < 2h 50m' OR '270m ≤ t ₁ < 4h 40m' and '2h 40m ≤ t ₂ < 2h 50m' OR '270m ≤ t ₁ < 280m' and '160m ≤ t ₂ < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).06 (hr) 90 (min) - 10 (min) • 7 (hr) 30 (min) - 10 (min) • 280 (min) + 170 (min) - 10 (min)A17 (hr) 20 (min)A1CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a)P(Bus =) 1 - 0:25 - 0:45 = 0:3 AND shown on relevant branch. 0:96 shown on all three branches.M1 A1 A1 Amard M1A0 for 0:3 in working space and not on diagram.17.(b)0:25 × 0:04 or equivalentM1			
award M1m1A1B0A1.16.Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 275(min) AND 165(min)B1Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).OR sight of 2 × 5(min) in an appropriate calculation.M1If B0, FT provided unambiguously chosen: '4h 30m ≤ t₁ < 4h 40m' and '2h 40m ≤ t₂ < 2h 50m' OR '275(min) + 165(min) (= 440 (min)) $275(min) + 165(min) (= 440 (min))$ M1If B0, FT provided unambiguously chosen: '4h 30m ≤ t₁ < 4h 40m' and '2h 40m ≤ t₂ < 2h 50m' OR '270m ≤ t₁ < 280m' and '160m ≤ t₂ < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).06 (hr) 90 (min) - 10 (min) \cdot 7 (hr) 30 (min) - 10 (min)A1CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a)P(Bus =) 1 - 0.25 - 0.45 $= 0.3$ AND shown on relevant branch. 0.96 shown on <u>all</u> three branches.M117.(b)0.25 × 0.04 or equivalentM1			
16.Sight of 4(hr) 35(min) AND 2(hr) 45(min) OR Sight of 275(min) AND 165(min)B1Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).OR sight of 2 × 5(min) in an appropriate calculation.M1If B0, FT provided unambiguously chosen: '4 h 30m \leq t < 4 h 40m' and '2h 40m \leq tz < 2h 50m' OR '275(min) + 165(min) (= 440 (min)) $= 6 (hr) 90 (min) - 10 (min)$ $= 7 (hr) 30 (min) - 10 (min)$ $= 280 (min) + 170 (min) - 10 (min)$ M1If B0, FT provided unambiguously chosen: '4h 30m \leq ti < 4h 40m' and '2h 40m \leq tz < 2h 50m' OR '270m \leq ti < 280m' and '160m \leq tz < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).T(hr) 20 (min)A1CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a)P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches.M117.(b)0.25 × 0.04 or equivalentM1			
ORSight of $275(\min)$ AND $165(\min)$ $35(\min)$ OR sight of $2 \times 5(\min)$ in an appropriate calculation. $35(\min)$ $35(\min)$.Valid method e.g.(M1)(M1) $160(\min) + 2(\ln) + 2(\ln) + 2(\ln) + 2(\ln) + 165(\min) = 6(\ln) + 80(\min) + 275(\min) + 165(\min) = 440 (\min) + 10 (\min)$ M1If B0, FT provided unambiguously chosen: ('4h $30m \le t_1 < 4h 40m' and '2h 40m \le t_2 < 2h 50m' OR('270m \le t_1 < 280m' and '160m \le t_2 < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(\ln)\bullet7 (hr) 30 (\min) - 10 (\min)7 (hr) 20 (\min)A1CAO. If units are given they must be correct.Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a)P(Bus =) 1 - 0.25 - 0.45= 0.3 AND shown on relevant branch.0.96 shown on all three branches.M1B117.(b)0.25 \times 0.04 or equivalentM1$			award M1m1A1B0A1.
ORSight of $275(\min)$ AND $165(\min)$ $35(\min)$ OR sight of $2 \times 5(\min)$ in an appropriate calculation. $35(\min)$ $35(\min)$.Valid method e.g.(M1)(M1) $160 \times 12 \times 50^{-10} \times 12^{-10} \times$	16 Sight of $4/hr$ 35(min) AND $2/hr$ 45(min)	P 1	Allow incorrect notation for time (e.g. 4:35 for 4/br)
OR sight of $2 \times 5(\min)$ in an appropriate calculation.M1If B0, FT provided unambiguously chosen: '4h 30m $\leq t_1 < 4h$ 40m' and '2h 40m $\leq t_2 < 2h$ 50m' OR '275(min) + 165(min) (= 440 (min)) $= 6 (hr) 90 (min) - 10 (min)$ $= 7 (hr) 30 (min) - 10 (min)$ $= 280 (min) + 170 (min) - 10 (min)$ $= 280 (min) + 170 (min) - 10 (min)$ M1If B0, FT provided unambiguously chosen: '4h 30m $\leq t_1 < 4h$ 40m' and '2h 40m $\leq t_2 < 2h$ 50m' OR '270m $\leq t_1 < 280m'$ and '160m $\leq t_2 < 170m'$ Allow incorrect notation for time (e.g. 4:35 for 4(hr) $35(min)).$ 7 (hr) 20 (min)A1CAO. If units are given they must be correct. 		ы	
Valid method e.g.M1If B0, FT provided unambiguously chosen: '4h 30m \leq t ₁ < 4h 40m' and '2h 40m \leq t ₂ < 2h 50m' OR '275(min) + 165(min) (= 440 (min)) • 6 (hr) 90 (min) - 10 (min) • 7 (hr) 30 (min) - 10 (min) • 4(hr) 40(min) + 2(hr) 50(min) - 10 (min) • 280 (min) + 170 (min) - 10(min)M1If B0, FT provided unambiguously chosen: '4h 30m \leq t ₁ < 4h 40m' and '2h 40m \leq t ₂ < 2h 50m' OR '270m \leq t ₁ < 280m' and '160m \leq t ₂ < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).7 (hr) 20 (min)A1CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a)P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches.M1 A117.(b)0.25 × 0.04 or equivalentM1			əə(mm)).
Valid method e.g.M1If B0, FT provided unambiguously chosen: '4h 30m \leq t ₁ < 4h 40m' and '2h 40m \leq t ₂ < 2h 50m' OR '275(min) + 165(min) (= 440 (min)) • 6 (hr) 90 (min) - 10 (min) • 7 (hr) 30 (min) - 10 (min) • 4(hr) 40(min) + 2(hr) 50(min) - 10 (min) • 280 (min) + 170 (min) - 10(min)M1If B0, FT provided unambiguously chosen: '4h 30m \leq t ₁ < 4h 40m' and '2h 40m \leq t ₂ < 2h 50m' OR '270m \leq t ₁ < 280m' and '160m \leq t ₂ < 170m' Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35(min)).7 (hr) 20 (min)A1CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a)P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches.M1 A117.(b)0.25 × 0.04 or equivalentM1	OP sight of 2 x 5/min) in an appropriate solution		
• $4(hr) 35(min) + 2(hr) 45(min)(=6(hr) 80(min))$ 275(min) + 165(min) (= 440 (min)) • $6(hr) 90 (min) - 10 (min)$ • $7(hr) 30 (min) - 10 (min)$ • $4(hr) 40(min) + 2(hr) 50(min) - 10 (min)$ • $280 (min) + 170 (min) - 10(min)$ T $(hr) 20 (min)$ 7(hr) 20 (min) 17.(a) P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches. 17.(b) 0.25 × 0.04 or equivalent 17.(b)	∇x signt of $z \sim o(min)$ in an appropriate calculation.		
• $4(hr) 35(min) + 2(hr) 45(min)(=6(hr) 80(min))$ 275(min) + 165(min) (= 440 (min)) • $6(hr) 90 (min) - 10 (min)$ • $7(hr) 30 (min) - 10 (min)$ • $4(hr) 40(min) + 2(hr) 50(min) - 10 (min)$ • $280 (min) + 170 (min) - 10(min)$ T $(hr) 20 (min)$ 7(hr) 20 (min) 17.(a) P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches. 17.(b) 0.25 × 0.04 or equivalent 17.(b)	Valid mathed a g	N.1.4	If PO ET provided uper bigueusly shares
$\begin{array}{c} 275(\min) + 165(\min) & (= 440 \ (\min) \) \\ \bullet & 6 \ (hr) \ 90 \ (min) - 10 \ (min) \\ \bullet & 7 \ (hr) \ 30 \ (min) - 10 \ (min) \\ \bullet & 4(hr) \ 40(min) + 2(hr) \ 50(min) - 10 \ (min) \\ \bullet & 280 \ (min) + 170 \ (min) - 10(min) \\ \hline & 7 \ (hr) \ 20 \ (min) \ (hr) $	-	IVIT	
$\begin{array}{c} 6 \ (hr) \ 90 \ (min) - 10 \ (min) \\ \hline 7 \ (hr) \ 30 \ (min) - 10 \ (min) \\ \hline 4 \ (hr) \ 40 \ (min) \ + \ 2(hr) \ 50 \ (min) \ - 10 \ (min) \\ \hline 280 \ (min) \ + \ 170 \ (min) \ - \ 10 \ (min) \\ \hline 7 \ (hr) \ 20 \ (min) \ (min) \ (min) \ (hr) \ ($			
7 (hr) 30 (min) - 10 (min) 4 (hr) 40(min) + 2(hr) 50(min) - 10 (min) 280 (min) + 170 (min) - 10(min)Allow incorrect notation for time (e.g. 4:35 for 4(hr) 35 (min)). 7 (hr) 20 (min) $A1$ CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20. $17.(a)$ $P(Bus =) 1 - 0.25 - 0.45$ $= 0.3$ AND shown on relevant branch. 0.96 shown on <u>all</u> three branches.M1 B1 $17.(b)$ 0.25×0.04 or equivalentM1			
• $4(hr) 40(min) + 2(hr) 50(min) - 10 (min)$ • $280 (min) + 170 (min) - 10(min)$ 7 (hr) 20 (min) 17.(a) $P(Bus =) 1 - 0.25 - 0.45$ = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches. 17.(b) 0.25×0.04 or equivalent M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A			
• $280 \text{ (min)} + 170 \text{ (min)} - 10 \text{ (min)}$ • $280 \text{ (min)} + 170 \text{ (min)} - 10 \text{ (min)}$ T (hr) 20 (min) A1 CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20. 17.(a) P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches. B1 A1 Award M1A0 for 0.3 in working space and not on diagram. B1			
7 (hr) 20 (min)A1CAO. If units are given they must be correct. Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20.17.(a) $P(Bus =) 1 - 0.25 - 0.45$ = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches.M1 A1 B1Award M1A0 for 0.3 in working space and not on diagram.17.(b) 0.25×0.04 or equivalentM1			35(min)).
$P(H)$ 20 (HH)Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20. $17.(a)$ $P(Bus =) 1 - 0.25 - 0.45$ = 0.3 AND shown on relevant branch.M1 A1 A1 0.96 shown on <u>all</u> three branches.B1 $17.(b)$ 0.25×0.04 or equivalentM1	 280 (min) + 170 (min) – 10(min) 		
$P(H)$ 20 (HH)Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20. $17.(a)$ $P(Bus =) 1 - 0.25 - 0.45$ = 0.3 AND shown on relevant branch.M1 A1 A1 0.96 shown on <u>all</u> three branches.B1 $17.(b)$ 0.25×0.04 or equivalentM1			
$P(H)$ 20 (HH)Award B1M1A0 for a final answer of 6hrs 80min, 6:80 or 7:20. $17.(a)$ $P(Bus =) 1 - 0.25 - 0.45$ = 0.3 AND shown on relevant branch.M1 A1 A1 0.96 shown on <u>all</u> three branches.B1 $17.(b)$ 0.25×0.04 or equivalentM1		A 4	CAO If units are given they must be served
17.(a) $P(Bus =) 1 - 0.25 - 0.45$ = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches.M1 A1 B1Award M1A0 for 0.3 in working space and not on diagram.17.(b) 0.25×0.04 or equivalentM1	7 (hr) 20 (min)	AT	
17.(a) P(Bus =) 1 - 0.25 - 0.45 = 0.3 AND shown on relevant branch. 0.96 shown on <u>all</u> three branches. M1 A1 B1 Award M1A0 for 0.3 in working space and not on diagram. 17.(b) 0.25 × 0.04 or equivalent M1			
= 0·3 AND shown on relevant branch. A1 Award M1A0 for 0·3 in working space and not on diagram. 0·96 shown on <u>all</u> three branches. B1 B1 17.(b) 0·25 × 0·04 or equivalent M1			OI 7.∠U.
= 0·3 AND shown on relevant branch. A1 Award M1A0 for 0·3 in working space and not on diagram. 0·96 shown on <u>all</u> three branches. B1 B1 17.(b) 0·25 × 0·04 or equivalent M1	17(a) D(Pup =) 1 0.25 0.45	N/4	
$\begin{array}{c} 0.96 \text{ shown on } \underline{all} \text{ three branches.} \\ 17.(b) \\ 0.25 \times 0.04 \text{ or equivalent} \\ \end{array} \qquad \qquad$			
0.96 shown on <u>all</u> three branches. B1 17.(b) 0.25 × 0.04 or equivalent	= 0.3 AND shown on relevant branch.	A1	
17.(b) 0.25 × 0.04 or equivalent M1	0.06 abover an all three branches	D 4	ulagraffi.
	U·90 snown on <u>all</u> three branches.	В1	
		N 4 4	
= 0.01 or equivalent A1 CAO			
	= 0.01 or equivalent	A1	LAU

18.	(Length) Area None Length Volume Length	В3	Must use the terminology given in the question. B3 for all 5 correct. B2 for 3 or 4 correct. B1 for 2 correct. B0 otherwise.
19.(a)	7·6 × 10 ⁻³	B1	
19.(b)	6 × 10 ⁵	B1	
19.(c)	2·8 × 10 ⁴	B2	 Mark final answer. Award B1 for one of the following: sight of 28 × 10³ sight of 28 000 equivalent correct value but not in standard form sight of 23 000 AND 5000 'their 28000' is written correctly in standard form, following one place value error in one of the numbers from work seen.
20.(a)	(AOY =) 36(°)	B1	Check diagram.
	(% shaded =) <u>36</u> (× 100) or equivalent 360	M1	FT 'their derived or stated angle AOY ' provided not 54°. Award M0A0 for $\frac{360(^\circ)}{36(^\circ)}$ = 10, but award M1A1 if a $\frac{36(^\circ)}{36(^\circ)}$ final answer of 10% is seen.
	= 10(%)	A1	 If no marks awarded, award: SC2 for unsupported 10% (AOY not shown or stated to be 36(°)) SC1 for a final answer of 15% (from using 54(°)).
'The ta	Statement explaining that, <u>ngent</u> at any point on a circle is Idicular (or equivalent) to the <u>radius</u> at that	E1	Accept unambiguous similar wording. e.g. 'Radius and tangent 90(°)'. Diameter could be used in place of radius. Must refer to <u>tangent</u> and <u>radius</u> by name (not simply <i>AY</i> and <i>OA</i> or description).